

PyETo

PyETo is a Python package for calculating reference crop evapotranspiration
(ETo), sometimes referred to as potential evapotranspiration (PET).
The library provides numerous functions for estimating missing meteorological
data.

Three methods for estimating ETo/PET are implemented:

	FAO-56 Penman-Monteith (Allen et al, 1998)

	Hargreaves (Hargreaves and Samani, 1985)

	Thornthwaite (Thornthwaite, 1948)

What does it look like? Here is a simple example that estimates monthly
potential evapotranspiration for Aberdeen, Scotland (latitude 57.1526
degrees N), using the Thornthwaite method:

>>> import pyeto
>>> latitude = pyeto.deg2rad(57.1526) # Convert latitude to radians
>>> mean_monthly_temperature = [
 >>> 3.1, 3.5, 5.0, 6.7, 9.3, 12.1, 14.3, 14.1, 11.8, 8.9, 5.5, 3.8]
>>> monthly_mean_daylight = pyeto.monthly_mean_daylight_hours(latitude)
>>> pyeto.thornthwaite(mean_monthly_temperature, monthly_mean_daylight)
 [11.04590543317501,
 14.225860424373405,
 27.802870598091953,
 43.178869424774305,
 70.47694909766452,
 93.99420906995957,
 109.69881616481408,
 95.24491684988213,
 64.9945211942068,
 41.06371810827504,
 19.562094545836995,
 12.090183352107148]

Installation

There is currently no way to install this package so you will have to include the source in your project in order to use it.

Documentation contents

This part of the documentation guides you through the various
evapotranspiration methods.

	Overview
	Estimating missing data

	Converting units

	FAO-56 Penman-Monteith method
	Required data

	Hargreaves equation

	Thornthwaite equation

	References

	Changelog
	Version 1.0rc1

	License
	License text

API Reference

If you are looking for information on a specific function, this part of the
documentation is for you.

	API
	Evapotranspiration

	Atmospheric pressure

	Daylight hours

	Humidity

	Pyschrometric constant

	Radiation

	Soil heat flux

	Solar angles etc.

	Temperature

	Wind speed

	Constants

	Unit conversion

Overview

You can install the library directly from PyPI:

pip install pyeto

Once installed, all public functions and constants are available via the
package name:

>>> import pyeto

PyETo currently implements the following methods for estimating
evapotranspiration:

	FAO-56 Penman-Monteith:pyeto.fao56_penman_monteith()

	Hargreaves: pyeto.hargreaves()

	Thornthwaite: pyeto.thornthwaite()

Instructions and examples of using each of these methods is given elsewhere in
the documentation.

Estimating missing data

Measurements of the necessary meteorological input variables for each method
are frequently not available. To help with this problem, PyETo implements
numerous functions for estimating “missing data”. Most of these functions are
based on the methods described by Allen et al (1998).

For example, atmospheric pressure can be estimated from altitude:

>>> pyeto.atm_pressure(1000) # pressure at 1000 m, in kilo Pascals
90.02461995703662

And saturation vapour pressure (es), can be estimated from temperature:

>>> pyeto.svp_from_t(15.0) # Sat. vapour pressure in kilo Pascals
1.7053462321157722

The API provides details of the functions available for estimating missing data.

Converting units

Careful attention must be paid to the units of each parameter supplied to a
function. Different functions may require the same variable, but in different
units. To assist with the handling of units, PyETo provides a small
collection of functions for converting between commonly used units. For
example, a location’s latitude in angular degrees can be converted to radians:

>>> pyeto.deg2rad(57.1)
0.9965830028887622

…or from radians into degrees:

>>> pyeto.rad2deg(0.9965830028887622)
57.1

See the unit conversion section in the API for a full list of unit conversion
functions.

FAO-56 Penman-Monteith method

This is the method recommended by the Food and Agriculture Organisation of
the United Nations (FAO) for estimating (ETo) for a short grass
crop using limited meteorological data (see Allen et al, 1998).

The FAO-56 Penman-Monteith equation requires site location, air temperature,
humidity, radiation and wind speed data for daily, weekly, ten-day or
monthly ETo calculations. It is important to verify the units of
all input data.*PyETo* provides functions to convert common units to the
standard unit (see the API of the pyeto.convert module).

The instructions given below are a brief summary of those given in Allen et al
(1998). It is recommended that you familiarise yourself with chapters 1 to 4
of Allen et al (1998) before proceeding.

Required data

The sections below describe each of the inputs required by the FAO-56
Penman-Monteith equation in fao.fao56_penman_monteith(). If measured
meteorological data are not available, many of the variables can be
estimated using functions in the fao module:

>>> from pyeto import fao

If a measured value is not available for a function’s parameter, functions
for estimating that parameter are suggested in the function’s documentation.

Note, that if monthly ETois desired, the value of ETocalculated with mean monthly weather data is very similar to the average of
the daily ETo values calculated with average weather data for that
month.

Location

Altitude above sea level (m) and latitude (degrees north or south) of the
location should be specified. These data are needed to adjust some weather
parameters for the local average value of atmospheric pressure (a function
of the site elevation above mean sea level) and to compute extraterrestrial
radiation (Ra) and, in some cases, daylight hours (N). In the calculation
procedures for Ra and N, the latitude is expressed in radians (you can use
pyeto.deg2rad() to convert degrees to radians).

Temperature

The (average) daily maximum and minimum air temperatures in degrees Celsius
(°C) are required. Where only (average) mean daily temperatures are available,
the calculations can still be executed but some underestimation of ETo
will probably occur due to the non-linearity of the saturation vapour pressure
- temperature relationship.

Humidity (vapour pressure)

The (average) daily actual vapour pressure, ea, is required. If measured actual
vapour pressure is not available the following functions can be used to
estimate actual vapour pressure (in order of preference):

	If dewpoint temperature data are available use fao.avp_from_tdew().

	If dry and wet bulb temperatures are available from a psychrometer
use fao.avp_from_twet_tdry().

	If reliable minimum and maximum relative humidity data available use
fao.avp_from_rhmin_rh_max().

	If measurement errors of relative humidity are large then use only
maximum relative humidity using fao.avp_from_rhmax()

	If minimum and maximum relative humidity are not available but mean
relative humidity is available then use fao.avp_from_rhmean() (but this
is less reliable than options 3 or 4).

	If no data for the above are available then use fao.avp_from_tmin().
This function is less reliable in arid areas where it is recommended that
2 degrees Celsius is subtracted from the minimum temperature before it is
passed to the function (following advice given in Annex 6 of Allen et al
(1998).

Saturation vapour pressure (es) is required and can be estimated from air
temperature using fao.svp_from_t(). The slope of the saturation vapour
pressure curve is also required and can be calculated using
fao.svp_from_t().

Net radiation

The (average) daily net radiation, Rn, is required. These data are not commonly
available but can be derived from the (average) shortwave radiation measured
with a pyranometer or from the (average) daily actual duration of bright
sunshine (hours per day) measured with a (Campbell-Stokes) sunshine recorder.

Alternatively, if measurements are not available, net radiation can be
estimated from net incoming solar (or shortwave) radiation and net
outgoing longwave radiation using fao.net_rad().

Net incoming solar radiation

Net solar (or shortwave) radiation is the amount of solar radiation that is
not reflected by the surface and can be calculated using
fao.net_in_sol_rad().

Solar (shortwave) radiation

The amount of incoming solar radiation (or shortwave radiation) reaching a
horizontal plane after scattering by the atmosphere. If measured values of
gross incoming solar radiation are not available the following functions (in
order of preference), can be used to estimate it:

	If sunshine duration data are available use fao.sol_rad_from_sun_hours().

	Otherwise use fao.sol_rad_from_t() which requires minimum and
maximum temperature. Suitable for coastal or inland areas but not islands.

	For island locations (<= 20 km wide), where no measured values are
available from elsewhere on the island and the altitude is 0-100 m, use
fao.sol_rad_island(). Only suitable for monthly calculations.

Net outgoing longwave radiation

Net outgoing longwave radiation is the net longwave energy leaving the earth’s
surface. It is proportional to the absolute temperature of the surface raised
to the fourth power according to the Stefan-Boltzmann law. However, water
vapour, clouds, carbon dioxide and dust are absorbers and emitters of longwave
radiation. This function corrects the Stefan-Boltzmann law for humidity (using
actual vapor pressure) and cloudiness (using solar radiation and clear sky
radiation). Net outgoing longwave radiation can be estimated using
fao.net_out_lw_rad().

Psychrometric constant

The psychrometric constant is the ratio of specific heat of moist air at
constant pressure to latent heat of vaporization of water. It can be
estimated from atmospheric pressure using fao.psy_const() or
fao.psy_const_of_psychrometer().

Soil heat flux

For a daily time step soil heat flux is small compared to net radiation
when the soil is covered by vegetation, so it can be assumed to be zero
(Allen et al, 1998).

For a monthly time step soil heat flux is significant and should be estimated
using:

	fao.monthly_soil_heat_flux() if temperature data for the previous and
next month is available, or

	fao.monthly_soil_heat_flux2() if temperature for the next month is not
available.

Hargreaves equation

The Hargreaves equation (Hargreaves and Samani, 1985) is a simple
evapotranspiration model that only requires a few easily accessible parameters:
mininimum, maximum and mean temperature, and extraterrestrial radiation.

The Hargreaves method is recommended by the FAO (Allen et al, 1998) as an
alternative method for estimating ETo if insufficient meteorological data are
available for the Penman-Monteith method. However, the FAO suggest that using
the Penman-Monteith method with estimated solar radiation, vapor pressure
and wind speed generally provides more accurate estimates than the Hargreaves
equation. This is due to the ability of the estimation equations to
incorporate general climatic characteristics such as high or low wind speed
or high or low relative humidity into the ETo estimate made using the
FAO Penman-Monteith method.

The Hargreaves equation has a tendency to under-estimate ETounder high wind conditions(u2 > 3m/s) and to over-estimate under conditions of
high relative humidity.

The following example uses the Hargreaves model to estimate monthly PET for the
1st of February, 2014, for Aberdeen, Scotland (latitude 57.1526 degrees N).

First, convert latitude to radians and the date to day of the year (Julian
day):

>>> import datetime, pyeto
>>> lat = pyeto.deg2rad(57.1526) # Convert latitude to radians
>>> day_of_year = datetime.date(2014, 2, 1).timetuple().tm_yday

To estimate extraterrestrial radiation we first need to calculate
solar declination, sunset hour angle and inverse relative distance Earth-Sun:

>>> sol_dec = pyeto.sol_dec(day_of_year) # Solar declination
>>> sha = pyeto.sunset_hour_angle(lat, sol_dec)
>>> ird = pyeto.inv_rel_dist_earth_sun(day_of_year)
>>> et_rad = pyeto.et_rad(lat, sol_dec, sha, ird) # Extraterrestrial radiation

Finally, we can estimate ETo, assuming a minimum temperature of
1.3, maximum temperature of 5.6 and mean temperature of 3.8:

>>> hargreaves(1.3, 5.6, 3.8, et_rad)

Thornthwaite equation

The Thornthwaite (1948) equation is a widely used empirical method for
estimating potential evapotranspiration (PET). The equation only requires mean
monthly air temperature and mean daily daylight hours for each month, which
can be calculated from latitude.

The following example estimates monthly PET in 2014 for Aberdeen, Scotland
(latitude 57.1526 degrees N):

First convert latitude to radians and calculate the monthly mean daylight
hours:

>>> from pyeto import thornthwaite, monthly_mean_daylight_hours, deg2rad
>>> lat = deg2rad(57.1526) # Convert latitude in degrees to radians
>>> # Calculate mean daylight hours of each month
>>> mmdlh = monthly_mean_daylight_hours(lat, 2014)
>>> mmdlh
[7.182842574993897,
 9.13512841264262,
 11.523002734356053,
 14.035348256722466,
 16.277003584884323,
 17.505213218539176,
 16.891449464611544,
 14.861767363416547,
 12.394150156712453,
 9.88498386070613,
 7.658250142104072,
 6.489516585536734]
>>> # Create iterable of monthly mean temperatures in degrees Celsius
>>> monthly_t = [
>>> 3.1, 3.5, 5.0, 6.7, 9.3, 12.1, 14.3, 14.1, 11.8, 8.9, 5.5, 3.8]
>>> thornthwaite(monthly_t, mmdlh) # Calculate PET
[11.04590543317501,
 14.225860424373405,
 27.802870598091953,
 43.178869424774305,
 70.47694909766452,
 93.99420906995957,
 109.69881616481408,
 95.24491684988213,
 64.9945211942068,
 41.06371810827504,
 19.562094545836995,
 12.090183352107148]

References

Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration.

Guidelines for computing crop water requirements. FAO irrigation and

drainage paper 56, FAO, Rome.

Hargreaves GH, Samani ZA (1982) Estimating potential evapotranspiration.

Journal of the Irrigation and Drainage Division, ASCE, 108(3):225-230.

Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from

temperature. Applied Engineering in Agriculture 1(2):96-99

(doi 10.13031/2013.26773).

Thornthwaite CW (1948) An approach toward a rational classification of

climate. Geographical Review, 38, 55-94.

Changelog

Version 1.0rc1

(first release candidate for PyETo 1.0, released on TODO:insert date here)

	Initial release.

License

PyETo is licensed under the BSD 3-Clause “New” or “Revised” License.

License text

Copyright (c) 2015, Mark Richards

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

API

This part of the documentation shows the full API reference of all public
functions.

Evapotranspiration

	
pyeto.fao56_penman_monteith(net_rad, t, ws, svp, avp, delta_svp, psy, shf=0.0)

	Estimate reference evapotranspiration (ETo) from a hypothetical
short grass reference surface using the FAO-56 Penman-Monteith equation.

Based on equation 6 in Allen et al (1998).

	Parameters:

	
	net_rad – Net radiation at crop surface [MJ m-2 day-1]. If
necessary this can be estimated using net_rad().

	t – Air temperature at 2 m height [deg Kelvin].

	ws – Wind speed at 2 m height [m s-1]. If not measured at 2m,
convert using wind_speed_at_2m().

	svp – Saturation vapour pressure [kPa]. Can be estimated using
``svp_from_t()’’.

	avp – Actual vapour pressure [kPa]. Can be estimated using a range
of functions with names beginning with ‘avp_from’.

	delta_svp – Slope of saturation vapour pressure curve [kPa degC-1].
Can be estimated using delta_svp().

	psy – Psychrometric constant [kPa deg C]. Can be estimatred using
psy_const_of_psychrometer() or psy_const().

	shf – Soil heat flux (G) [MJ m-2 day-1] (default is 0.0, which is
reasonable for a daily or 10-day time steps). For monthly time steps
shf can be estimated using monthly_soil_heat_flux() or
monthly_soil_heat_flux2().

	Returns:

	Reference evapotranspiration (ETo) from a hypothetical
grass reference surface [mm day-1].

	Return type:

	float

	
pyeto.hargreaves(tmin, tmax, tmean, et_rad)

	Estimate reference evapotranspiration over grass (ETo) using the Hargreaves
equation.

Generally, when solar radiation data, relative humidity data
and/or wind speed data are missing, it is better to estimate them using
the functions available in this module, and then calculate ETo
the FAO Penman-Monteith equation. However, as an alternative, ETo can be
estimated using the Hargreaves ETo equation.

Based on equation 52 in Allen et al (1998).

	Parameters:

	
	tmin – Minimum daily temperature [deg C]

	tmax – Maximum daily temperature [deg C]

	tmean – Mean daily temperature [deg C]. If emasurements not
available it can be estimated as (tmin + tmax) / 2.

	et_rad – Extraterrestrial radiation (Ra) [MJ m-2 day-1]. Can be
estimated using et_rad().

	Returns:

	Reference evapotranspiration over grass (ETo) [mm day-1]

	Return type:

	float

	
pyeto.thornthwaite(monthly_t, monthly_mean_dlh, year=None)

	Estimate monthly potential evapotranspiration (PET) using the
Thornthwaite (1948) method.

Thornthwaite equation:

PET = 1.6 (L/12) (N/30) (10*Ta* / I)***a*

where:

	Ta is the mean daily air temperature [deg C, if negative use 0] of the
month being calculated

	N is the number of days in the month being calculated

	L is the mean day length [hours] of the month being calculated

	a = (6.75 x 10-7)*I***3 - (7.71 x 10-5)*I***2 + (1.792 x 10-2)*I* + 0.49239

	I is a heat index which depends on the 12 monthly mean temperatures and
is calculated as the sum of (Tai / 5)**1.514 for each month, where
Tai is the air temperature for each month in the year

	Parameters:

	
	monthly_t – Iterable containing mean daily air temperature for each
month of the year [deg C].

	monthly_mean_dlh – Iterable containing mean daily daylight
hours for each month of the year (hours]. These can be calculated
using monthly_mean_daylight_hours().

	year – Year for which PET is required. The only effect of year is
to change the number of days in February to 29 if it is a leap year.
If it is left as the default (None), then the year is assumed not to
be a leap year.

	Returns:

	Estimated monthly potential evaporation of each month of the year
[mm/month]

	Return type:

	List of floats

Atmospheric pressure

	
pyeto.atm_pressure(altitude)

	Estimate atmospheric pressure from altitude.

Calculated using a simplification of the ideal gas law, assuming 20 degrees
Celsius for a standard atmosphere. Based on equation 7, page 62 in Allen
et al (1998).

	Parameters:

	altitude – Elevation/altitude above sea level [m]

	Returns:

	atmospheric pressure [kPa]

	Return type:

	float

Daylight hours

	
pyeto.daylight_hours(sha)

	Calculate daylight hours from sunset hour angle.

Based on FAO equation 34 in Allen et al (1998).

	Parameters:

	sha – Sunset hour angle [rad]. Can be calculated using
sunset_hour_angle().

	Returns:

	Daylight hours.

	Return type:

	float

	
pyeto.monthly_mean_daylight_hours(latitude, year=None)

	Calculate mean daylight hours for each month of the year for a given
latitude.

	Parameters:

	
	latitude – Latitude [radians]

	year – Year for the daylight hours are required. The only effect of
year is to change the number of days in Feb to 29 if it is a leap
year. If left as the default, None, then a normal (non-leap) year is
assumed.

	Returns:

	Mean daily daylight hours of each month of a year [hours]

	Return type:

	List of floats.

Humidity

Actual vapour pressure (ea)

	
pyeto.avp_from_rhmax(svp_tmin, rh_max)

	Estimate actual vapour pressure (*e*a) from saturation vapour pressure at
daily minimum temperature and maximum relative humidity

Based on FAO equation 18 in Allen et al (1998).

	Parameters:

	
	svp_tmin – Saturation vapour pressure at daily minimum temperature
[kPa]. Can be estimated using svp_from_t().

	rh_max – Maximum relative humidity [%]

	Returns:

	Actual vapour pressure [kPa]

	Return type:

	float

	
pyeto.avp_from_rhmean(svp_tmin, svp_tmax, rh_mean)

	Estimate actual vapour pressure (ea) from saturation vapour pressure at
daily minimum and maximum temperature, and mean relative humidity.

Based on FAO equation 19 in Allen et al (1998).

	Parameters:

	
	svp_tmin – Saturation vapour pressure at daily minimum temperature
[kPa]. Can be estimated using svp_from_t().

	svp_tmax – Saturation vapour pressure at daily maximum temperature
[kPa]. Can be estimated using svp_from_t().

	rh_mean – Mean relative humidity [%] (average of RH min and RH max).

	Returns:

	Actual vapour pressure [kPa]

	Return type:

	float

	
pyeto.avp_from_rhmin_rhmax(svp_tmin, svp_tmax, rh_min, rh_max)

	Estimate actual vapour pressure (ea) from saturation vapour pressure and
relative humidity.

Based on FAO equation 17 in Allen et al (1998).

	Parameters:

	
	svp_tmin – Saturation vapour pressure at daily minimum temperature
[kPa]. Can be estimated using svp_from_t().

	svp_tmax – Saturation vapour pressure at daily maximum temperature
[kPa]. Can be estimated using svp_from_t().

	rh_min – Minimum relative humidity [%]

	rh_max – Maximum relative humidity [%]

	Returns:

	Actual vapour pressure [kPa]

	Return type:

	float

	
pyeto.avp_from_tdew(tdew)

	Estimate actual vapour pressure (ea) from dewpoint temperature.

Based on equation 14 in Allen et al (1998). As the dewpoint temperature is
the temperature to which air needs to be cooled to make it saturated, the
actual vapour pressure is the saturation vapour pressure at the dewpoint
temperature.

This method is preferable to calculating vapour pressure from
minimum temperature.

	Parameters:

	tdew – Dewpoint temperature [deg C]

	Returns:

	Actual vapour pressure [kPa]

	Return type:

	float

	
pyeto.avp_from_tmin(tmin)

	Estimate actual vapour pressure (ea) from minimum temperature.

This method is to be used where humidity data are lacking or are of
questionable quality. The method assumes that the dewpoint temperature
is approximately equal to the minimum temperature (tmin), i.e. the
air is saturated with water vapour at tmin.

Note: This assumption may not hold in arid/semi-arid areas.
In these areas it may be better to subtract 2 deg C from the
minimum temperature (see Annex 6 in FAO paper).

Based on equation 48 in Allen et al (1998).

	Parameters:

	tmin – Daily minimum temperature [deg C]

	Returns:

	Actual vapour pressure [kPa]

	Return type:

	float

	
pyeto.avp_from_twet_tdry(twet, tdry, svp_twet, psy_const)

	Estimate actual vapour pressure (ea) from wet and dry bulb temperature.

Based on equation 15 in Allen et al (1998). As the dewpoint temperature
is the temperature to which air needs to be cooled to make it saturated, the
actual vapour pressure is the saturation vapour pressure at the dewpoint
temperature.

This method is preferable to calculating vapour pressure from
minimum temperature.

Values for the psychrometric constant of the psychrometer (psy_const)
can be calculated using psyc_const_of_psychrometer().

	Parameters:

	
	twet – Wet bulb temperature [deg C]

	tdry – Dry bulb temperature [deg C]

	svp_twet – Saturated vapour pressure at the wet bulb temperature
[kPa]. Can be estimated using svp_from_t().

	psy_const – Psychrometric constant of the pyschrometer [kPa deg C-1].
Can be estimated using psy_const() or
psy_const_of_psychrometer().

	Returns:

	Actual vapour pressure [kPa]

	Return type:

	float

Saturated vapour pressure (es)

	
pyeto.delta_svp(t)

	Estimate the slope of the saturation vapour pressure curve at a given
temperature.

Based on equation 13 in Allen et al (1998). If using in the Penman-Monteith
t should be the mean air temperature.

	Parameters:

	t – Air temperature [deg C]. Use mean air temperature for use in
Penman-Monteith.

	Returns:

	Saturation vapour pressure [kPa degC-1]

	Return type:

	float

	
pyeto.mean_svp(tmin, tmax)

	Estimate mean saturation vapour pressure, es [kPa] from minimum and
maximum temperature.

Based on equations 11 and 12 in Allen et al (1998).

Mean saturation vapour pressure is calculated as the mean of the
saturation vapour pressure at tmax (maximum temperature) and tmin
(minimum temperature).

	Parameters:

	
	tmin – Minimum temperature [deg C]

	tmax – Maximum temperature [deg C]

	Returns:

	Mean saturation vapour pressure (es) [kPa]

	Return type:

	float

	
pyeto.svp_from_t(t)

	Estimate saturation vapour pressure (es) from air temperature.

Based on equations 11 and 12 in Allen et al (1998).

	Parameters:

	t – Temperature [deg C]

	Returns:

	Saturation vapour pressure [kPa]

	Return type:

	float

Relative humidity (RH)

	
pyeto.rh_from_avp_svp(avp, svp)

	Calculate relative humidity as the ratio of actual vapour pressure
to saturation vapour pressure at the same temperature.

See Allen et al (1998), page 67 for details.

	Parameters:

	
	avp – Actual vapour pressure [units do not matter so long as they
are the same as for svp]. Can be estimated using functions whose
name begins with ‘avp_from’.

	svp – Saturated vapour pressure [units do not matter so long as they
are the same as for avp]. Can be estimated using svp_from_t().

	Returns:

	Relative humidity [%].

	Return type:

	float

Pyschrometric constant

	
pyeto.psy_const(atmos_pres)

	Calculate the psychrometric constant.

This method assumes that the air is saturated with water vapour at the
minimum daily temperature. This assumption may not hold in arid areas.

Based on equation 8, page 95 in Allen et al (1998).

	Parameters:

	atmos_pres – Atmospheric pressure [kPa]. Can be estimated using
atm_pressure().

	Returns:

	Psychrometric constant [kPa degC-1].

	Return type:

	float

	
pyeto.psy_const_of_psychrometer(psychrometer, atmos_pres)

	Calculate the psychrometric constant for different types of
psychrometer at a given atmospheric pressure.

Based on FAO equation 16 in Allen et al (1998).

	Parameters:

	
	psychrometer – Integer between 1 and 3 which denotes type of
psychrometer:
1. ventilated (Asmann or aspirated type) psychrometer with

an air movement of approximately 5 m/s

	natural ventilated psychrometer with an air movement
of approximately 1 m/s

	non ventilated psychrometer installed indoors

	atmos_pres – Atmospheric pressure [kPa]. Can be estimated using
atm_pressure().

	Returns:

	Psychrometric constant [kPa degC-1].

	Return type:

	float

Radiation

	
pyeto.cs_rad(altitude, et_rad)

	Estimate clear sky radiation from altitude and extraterrestrial radiation.

Based on equation 37 in Allen et al (1998) which is recommended when
calibrated Angstrom values are not available.

	Parameters:

	
	altitude – Elevation above sea level [m]

	et_rad – Extraterrestrial radiation [MJ m-2 day-1]. Can be
estimated using et_rad().

	Returns:

	Clear sky radiation [MJ m-2 day-1]

	Return type:

	float

	
pyeto.et_rad(latitude, sol_dec, sha, ird)

	Estimate daily extraterrestrial radiation (Ra, ‘top of the atmosphere
radiation’).

Based on equation 21 in Allen et al (1998). If monthly mean radiation is
required make sure sol_dec. sha and irl have been calculated using
the day of the year that corresponds to the middle of the month.

Note: From Allen et al (1998): “For the winter months in latitudes
greater than 55 degrees (N or S), the equations have limited validity.
Reference should be made to the Smithsonian Tables to assess possible
deviations.”

	Parameters:

	
	latitude – Latitude [radians]

	sol_dec – Solar declination [radians]. Can be calculated using
sol_dec().

	sha – Sunset hour angle [radians]. Can be calculated using
sunset_hour_angle().

	ird – Inverse relative distance earth-sun [dimensionless]. Can be
calculated using inv_rel_dist_earth_sun().

	Returns:

	Daily extraterrestrial radiation [MJ m-2 day-1]

	Return type:

	float

	
pyeto.net_in_sol_rad(sol_rad, albedo=0.23)

	Calculate net incoming solar (or shortwave) radiation from gross
incoming solar radiation, assuming a grass reference crop.

Net incoming solar radiation is the net shortwave radiation resulting
from the balance between incoming and reflected solar radiation. The
output can be converted to equivalent evaporation [mm day-1] using
energy2evap().

Based on FAO equation 38 in Allen et al (1998).

	Parameters:

	
	sol_rad – Gross incoming solar radiation [MJ m-2 day-1]. If
necessary this can be estimated using functions whose name
begins with ‘sol_rad_from’.

	albedo – Albedo of the crop as the proportion of gross incoming solar
radiation that is reflected by the surface. Default value is 0.23,
which is the value used by the FAO for a short grass reference crop.
Albedo can be as high as 0.95 for freshly fallen snow and as low as
0.05 for wet bare soil. A green vegetation over has an albedo of
about 0.20-0.25 (Allen et al, 1998).

	Returns:

	Net incoming solar (or shortwave) radiation [MJ m-2 day-1].

	Return type:

	float

	
pyeto.net_out_lw_rad(tmin, tmax, sol_rad, cs_rad, avp)

	Estimate net outgoing longwave radiation.

This is the net longwave energy (net energy flux) leaving the
earth’s surface. It is proportional to the absolute temperature of
the surface raised to the fourth power according to the Stefan-Boltzmann
law. However, water vapour, clouds, carbon dioxide and dust are absorbers
and emitters of longwave radiation. This function corrects the Stefan-
Boltzmann law for humidity (using actual vapor pressure) and cloudiness
(using solar radiation and clear sky radiation). The concentrations of all
other absorbers are assumed to be constant.

The output can be converted to equivalent evaporation [mm day-1] using
energy2evap().

Based on FAO equation 39 in Allen et al (1998).

	Parameters:

	
	tmin – Absolute daily minimum temperature [degrees Kelvin]

	tmax – Absolute daily maximum temperature [degrees Kelvin]

	sol_rad – Solar radiation [MJ m-2 day-1]. If necessary this can be
estimated using sol+rad().

	cs_rad – Clear sky radiation [MJ m-2 day-1]. Can be estimated using
cs_rad().

	avp – Actual vapour pressure [kPa]. Can be estimated using functions
with names beginning with ‘avp_from’.

	Returns:

	Net outgoing longwave radiation [MJ m-2 day-1]

	Return type:

	float

	
pyeto.net_rad(ni_sw_rad, no_lw_rad)

	Calculate daily net radiation at the crop surface, assuming a grass
reference crop.

Net radiation is the difference between the incoming net shortwave (or
solar) radiation and the outgoing net longwave radiation. Output can be
converted to equivalent evaporation [mm day-1] using energy2evap().

Based on equation 40 in Allen et al (1998).

	Parameters:

	
	ni_sw_rad – Net incoming shortwave radiation [MJ m-2 day-1]. Can be
estimated using net_in_sol_rad().

	no_lw_rad – Net outgoing longwave radiation [MJ m-2 day-1]. Can be
estimated using net_out_lw_rad().

	Returns:

	Daily net radiation [MJ m-2 day-1].

	Return type:

	float

	
pyeto.sol_rad_from_sun_hours(daylight_hours, sunshine_hours, et_rad)

	Calculate incoming solar (or shortwave) radiation, Rs (radiation hitting
a horizontal plane after scattering by the atmosphere) from relative
sunshine duration.

If measured radiation data are not available this method is preferable
to calculating solar radiation from temperature. If a monthly mean is
required then divide the monthly number of sunshine hours by number of
days in the month and ensure that et_rad and daylight_hours was
calculated using the day of the year that corresponds to the middle of
the month.

Based on equations 34 and 35 in Allen et al (1998).

	Parameters:

	
	dl_hours – Number of daylight hours [hours]. Can be calculated
using daylight_hours().

	sunshine_hours – Sunshine duration [hours].

	et_rad – Extraterrestrial radiation [MJ m-2 day-1]. Can be
estimated using et_rad().

	Returns:

	Incoming solar (or shortwave) radiation [MJ m-2 day-1]

	Return type:

	float

	
pyeto.sol_rad_from_t(et_rad, cs_rad, tmin, tmax, coastal)

	Estimate incoming solar (or shortwave) radiation, Rs, (radiation hitting
a horizontal plane after scattering by the atmosphere) from min and max
temperature together with an empirical adjustment coefficient for
‘interior’ and ‘coastal’ regions.

The formula is based on equation 50 in Allen et al (1998) which is the
Hargreaves radiation formula (Hargreaves and Samani, 1982, 1985). This
method should be used only when solar radiation or sunshine hours data are
not available. It is only recommended for locations where it is not
possible to use radiation data from a regional station (either because
climate conditions are heterogeneous or data are lacking).

NOTE: this method is not suitable for island locations due to the
moderating effects of the surrounding water.

	Parameters:

	
	et_rad – Extraterrestrial radiation [MJ m-2 day-1]. Can be
estimated using et_rad().

	cs_rad – Clear sky radiation [MJ m-2 day-1]. Can be estimated
using cs_rad().

	tmin – Daily minimum temperature [deg C].

	tmax – Daily maximum temperature [deg C].

	coastal – True if site is a coastal location, situated on or
adjacent to coast of a large land mass and where air masses are
influenced by a nearby water body, False if interior location
where land mass dominates and air masses are not strongly influenced
by a large water body.

	Returns:

	Incoming solar (or shortwave) radiation (Rs) [MJ m-2 day-1].

	Return type:

	float

	
pyeto.sol_rad_island(et_rad)

	Estimate incoming solar (or shortwave) radiation, Rs (radiation hitting
a horizontal plane after scattering by the atmosphere) for an island
location.

An island is defined as a land mass with width perpendicular to the
coastline <= 20 km. Use this method only if radiation data from
elsewhere on the island is not available.

NOTE: This method is only applicable for low altitudes (0-100 m)
and monthly calculations.

Based on FAO equation 51 in Allen et al (1998).

	Parameters:

	et_rad – Extraterrestrial radiation [MJ m-2 day-1]. Can be
estimated using et_rad().

	Returns:

	Incoming solar (or shortwave) radiation [MJ m-2 day-1].

	Return type:

	float

Soil heat flux

	
pyeto.monthly_soil_heat_flux(t_month_prev, t_month_next)

	Estimate monthly soil heat flux (Gmonth) from the mean air temperature of
the previous and next month, assuming a grass crop.

Based on equation 43 in Allen et al (1998). If the air temperature of the
next month is not known use monthly_soil_heat_flux2() instead. The
resulting heat flux can be converted to equivalent evaporation [mm day-1]
using energy2evap().

	Parameters:

	
	t_month_prev – Mean air temperature of the previous month
[deg Celsius]

	t_month2_next – Mean air temperature of the next month [deg Celsius]

	Returns:

	Monthly soil heat flux (Gmonth) [MJ m-2 day-1]

	Return type:

	float

	
pyeto.monthly_soil_heat_flux2(t_month_prev, t_month_cur)

	Estimate monthly soil heat flux (Gmonth) [MJ m-2 day-1] from the mean
air temperature of the previous and current month, assuming a grass crop.

Based on equation 44 in Allen et al (1998). If the air temperature of the
next month is available, use monthly_soil_heat_flux() instead. The
resulting heat flux can be converted to equivalent evaporation [mm day-1]
using energy2evap().

Arguments:
:param t_month_prev: Mean air temperature of the previous month

[deg Celsius]

	Parameters:

	t_month_cur – Mean air temperature of the current month [deg Celsius]

	Returns:

	Monthly soil heat flux (Gmonth) [MJ m-2 day-1]

	Return type:

	float

Solar angles etc.

	
pyeto.inv_rel_dist_earth_sun(day_of_year)

	Calculate the inverse relative distance between earth and sun from
day of the year.

Based on FAO equation 23 in Allen et al (1998).

	Parameters:

	day_of_year – Day of the year [1 to 366]

	Returns:

	Inverse relative distance between earth and the sun

	Return type:

	float

	
pyeto.sol_dec(day_of_year)

	Calculate solar declination from day of the year.

Based on FAO equation 24 in Allen et al (1998).

	Parameters:

	day_of_year – Day of year integer between 1 and 365 or 366).

	Returns:

	solar declination [radians]

	Return type:

	float

	
pyeto.sunset_hour_angle(latitude, sol_dec)

	Calculate sunset hour angle (Ws) from latitude and solar
declination.

Based on FAO equation 25 in Allen et al (1998).

	Parameters:

	
	latitude – Latitude [radians]. Note: latitude should be negative
if it in the southern hemisphere, positive if in the northern
hemisphere.

	sol_dec – Solar declination [radians]. Can be calculated using
sol_dec().

	Returns:

	Sunset hour angle [radians].

	Return type:

	float

Temperature

	
pyeto.daily_mean_t(tmin, tmax)

	Estimate mean daily temperature from the daily minimum and maximum
temperatures.

	Parameters:

	
	tmin – Minimum daily temperature [deg C]

	tmax – Maximum daily temperature [deg C]

	Returns:

	Mean daily temperature [deg C]

	Return type:

	float

Wind speed

	
pyeto.wind_speed_2m(ws, z)

	Convert wind speed measured at different heights above the soil
surface to wind speed at 2 m above the surface, assuming a short grass
surface.

Based on FAO equation 47 in Allen et al (1998).

	Parameters:

	
	ws – Measured wind speed [m s-1]

	z – Height of wind measurement above ground surface [m]

	Returns:

	Wind speed at 2 m above the surface [m s-1]

	Return type:

	float

Constants

	
pyeto.fao.SOLAR_CONSTANT = 0.082

	Solar constant [MJ m-2 min-1]

	
pyeto.fao.STEFAN_BOLTZMANN_CONSTANT = 4.903e-09

	Stefan Boltzmann constant [MJ K-4 m-2 day-1]

Unit conversion

	
pyeto.celsius2kelvin(celsius)

	Convert temperature in degrees Celsius to degrees Kelvin.

	Parameters:

	celsius – Degrees Celsius

	Returns:

	Degrees Kelvin

	Return type:

	float

	
pyeto.deg2rad(degrees)

	Convert angular degrees to radians

	Parameters:

	degrees – Value in degrees to be converted.

	Returns:

	Value in radians

	Return type:

	float

	
pyeto.energy2evap(energy)

	Convert energy (e.g. radiation energy) in MJ m-2 day-1 to the equivalent
evaporation, assuming a grass reference crop.

Energy is converted to equivalent evaporation using a conversion
factor equal to the inverse of the latent heat of vapourisation
(1 / lambda = 0.408).

Based on FAO equation 20 in Allen et al (1998).

	Parameters:

	energy – Energy e.g. radiation or heat flux [MJ m-2 day-1].

	Returns:

	Equivalent evaporation [mm day-1].

	Return type:

	float

	
pyeto.kelvin2celsius(kelvin)

	Convert temperature in degrees Kelvin to degrees Celsius.

	Parameters:

	kelvin – Degrees Kelvin

	Returns:

	Degrees Celsius

	Return type:

	float

	
pyeto.rad2deg(radians)

	Convert radians to angular degrees

	Parameters:

	radians – Value in radians to be converted.

	Returns:

	Value in angular degrees

	Return type:

	float

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 pyeto	

Index

 A
 | C
 | D
 | E
 | F
 | H
 | I
 | K
 | M
 | N
 | P
 | R
 | S
 | T
 | W

A

 	
 	atm_pressure() (in module pyeto)

 	avp_from_rhmax() (in module pyeto)

 	avp_from_rhmean() (in module pyeto)

 	
 	avp_from_rhmin_rhmax() (in module pyeto)

 	avp_from_tdew() (in module pyeto)

 	avp_from_tmin() (in module pyeto)

 	avp_from_twet_tdry() (in module pyeto)

C

 	
 	celsius2kelvin() (in module pyeto)

 	
 	cs_rad() (in module pyeto)

D

 	
 	daily_mean_t() (in module pyeto)

 	daylight_hours() (in module pyeto)

 	
 	deg2rad() (in module pyeto)

 	delta_svp() (in module pyeto)

E

 	
 	energy2evap() (in module pyeto)

 	
 	et_rad() (in module pyeto)

F

 	
 	fao56_penman_monteith() (in module pyeto)

H

 	
 	hargreaves() (in module pyeto)

I

 	
 	inv_rel_dist_earth_sun() (in module pyeto)

K

 	
 	kelvin2celsius() (in module pyeto)

M

 	
 	mean_svp() (in module pyeto)

 	monthly_mean_daylight_hours() (in module pyeto)

 	
 	monthly_soil_heat_flux() (in module pyeto)

 	monthly_soil_heat_flux2() (in module pyeto)

N

 	
 	net_in_sol_rad() (in module pyeto)

 	
 	net_out_lw_rad() (in module pyeto)

 	net_rad() (in module pyeto)

P

 	
 	psy_const() (in module pyeto)

 	
 	psy_const_of_psychrometer() (in module pyeto)

 	pyeto (module)

R

 	
 	rad2deg() (in module pyeto)

 	
 	rh_from_avp_svp() (in module pyeto)

S

 	
 	sol_dec() (in module pyeto)

 	sol_rad_from_sun_hours() (in module pyeto)

 	sol_rad_from_t() (in module pyeto)

 	sol_rad_island() (in module pyeto)

 	
 	SOLAR_CONSTANT (in module pyeto.fao)

 	STEFAN_BOLTZMANN_CONSTANT (in module pyeto.fao)

 	sunset_hour_angle() (in module pyeto)

 	svp_from_t() (in module pyeto)

T

 	
 	thornthwaite() (in module pyeto)

W

 	
 	wind_speed_2m() (in module pyeto)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 PyETo

 		
 Overview

 		
 Estimating missing data

 		
 Converting units

 		
 FAO-56 Penman-Monteith method

 		
 Required data

 		
 Location

 		
 Temperature

 		
 Humidity (vapour pressure)

 		
 Net radiation

 		
 Psychrometric constant

 		
 Soil heat flux

 		
 Hargreaves equation

 		
 Thornthwaite equation

 		
 References

 		
 Changelog

 		
 Version 1.0rc1

 		
 License

 		
 License text

 		
 API

 		
 Evapotranspiration

 		
 Atmospheric pressure

 		
 Daylight hours

 		
 Humidity

 		
 Actual vapour pressure (ea)

 		
 Saturated vapour pressure (es)

 		
 Relative humidity (RH)

 		
 Pyschrometric constant

 		
 Radiation

 		
 Soil heat flux

 		
 Solar angles etc.

 		
 Temperature

 		
 Wind speed

 		
 Constants

 		
 Unit conversion

_static/up-pressed.png

_static/up.png

_static/plus.png

